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Behaviour of an edge dislocation in a 
semi-infinite solid with surface energy effects 
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The method of continuously distributed dislocations and the method of discrete 
distribution of dislocations have been used to determine the effect of surface energy on 
the surface boundary conditions of a semi-infinite solid containing an edge dislocation. 
The surface dislocation model which incorporates two surface dislocation arrays, the 
primary and the secondary, in order of importance, is used to study the effect of surface 
energy. The surface dislocation model in conjunction with the method of continuously 
distributed dislocations enables the exact determination of the dislocation distribution 
function of the primary and secondary dislocation arrays and the effect of surface 
energy tends to lower both the total Burgers vector associated with the surface arrays and 
dislocations in evaluating the effect of surface energy is illustrated and is compared with 
the method of continuously distributed dislocations. It has been found that the surface 
energy tends to lower both the total Burgers vector associated with the surface arrays and 
the length of the region within which they are spread on the surface. Although the effect 
on the primary surface arrays is not very large, the secondary surface arrays are 
completely eliminated with normal values of surface energy encountered in real solids. 
Thus, the effect of surface energy is to bring non-vanishing stress components to the 
surface. The surface is also non-uniformly stressed. The superiority of the surface 
dislocation model over the other methods hitherto used in the literature is illustrated. 

1. Introduction 
The elastic properties of a dislocation i~ an infinite 
medium have been obtained using the classical 
theory of elasticity [1, 2]. The elastic properties 
in a finite medium are obtained when the solutions 
to the elasticity equations in an infinite medium 
are modified by the boundary conditions acting on 
the free surfaces of the finite medium. In the 
already established methods of linear elasticity, 
these boundary conditions specify that the stresses 
acting normal to the free surface should vanish [3]. 
In the analysis of the elastic properties of a 
dislocation, various methods are adopted to satisfy 
the boundary conditions on the surface. The most 
straightforward, although tedious mathematically, 
is to solve the elasticity equations. However, there 
are various short cuts to this method. In the 
Green's function technique [4], the elasticity 

equations, for the specific geometry, are already 
solved to obtain the Green's functions which are 
the displacements due to a point force. When 
these are integrated over the cut surfaces forming 
the dislocation, the boundary conditions are auto- 
matically satisfied. Therefore, it is first required to 
solve the elasticity equations in order to arrive at 
the Green's functions for the specific geometry. 

In the image dislocation model, the surface 
boundary conditions are satisfied by placing a dis- 
location of opposite sign in the vacuum, at a dis- 
tance equal to the position of the dislocation from 
the free surface. The dislocation in vacuum is 
called the image dislocation of the real dislocation 
situated in the homogeneous finite medium [5, 6]. 
In many cases and even in the simplest situation 
of an edge dislocation situated in a semi-infinite 
medium, merely using an image dislocation does 
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not completely satisfy the boundary conditions. 
In order to completely satisfy the boundary con- 
ditions, an additional stress term must be added 
to the Airy stress function [3]. It has also been 
proved [7] that the image dislocation method is 
conceptually incomplete since it is inconsistent 
with the cutting operation associated with the 
formation of free surfaces and also because it is 
misleading in not considering the stress field of 
the dislocation in vacuum. In analogy with 
the electrostatic situation, the image charge has 
indeed a field associated with it in vacuum. Thus, 
the image dislocation model, although giving 
the correct elastic field, is physically inconsistent. 
Furthermore, it will be shown below that the 
Green's function method and the image dis- 
location method cannot be used, at least in their 
present forms, in understanding the effect of sur- 
face energy on the surface boundary conditions, 
whereas the surface dislocation method can be 
employed. 

The surface dislocation model [7] wherein the 
surface boundary conditions are satisfied by 
placing surface arrays of dislocations on the 
surface is more general and applicable in many 
situations [8, 9] ,  namely those representing the 
effect of surface energy or in representing the 
applied stress on a body or in satisfying the surface 
boundary conditions in an internally stressed solid. 
In particular, when the finite body contains an 
edge dislocation, the surface arrays consist of 
those with Burgers vector perpendicular to the 
surface and those with Burgers vector parallel to 
the surface. The surface dislocation model for an 
edge dislocation in a semi-infinite solid with its, 
Burgers vector perpendicular to the surface is given 
in Fig. 1. There are two arrays on the surface. The 
surface dislocation array with Burgers vector per- 
pendicular to the surface is the primary array 
since it is the important one in satisfying the 
boundary conditions, i.e. its energy contribution 
in the relaxation of the surface is the major one. 
It is also found that the law of conversation of 
Burgers vectors of the primary surface array plus 
the Burgers vector of the lattice dislocation 
is satisfied [7]. The surface array with Burgers 
vector parallel to the surface, as shown in Fig. 1, 
is the secondary array since its contribution to 
the relaxation of the surface is minor and at the 
most may be 10% of the total energy. Fig. 2 shows 
the surface dislocation model of an edge 
dislocation with Burgers vector parallel to the free 

surface. The surface array with Burgers vector 
parallel to the free surface is the primary array and 
that with Burgers vector perpendicular to the 
surface is the secondary array. This nomenclature 

follows the same reasoning as that for an edge dis- 
location with Burgers vector perpendicular to the 
surface. It has been proven that the above surface 
dislocation models give the surface boundary con- 
ditions as required by linear elasticity. The surface 
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Figure 1 An edge dislocation with Burgers vector per- 
pendicular to the free surface with the surface dislocation 
arrays consisting of two sets of edge dislocations chosen 
to satisfy the free surface boundary conditions, Crxx = 0 

and axy = 0 on the x = 0 plane. 
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Figure 2 An edge dislocation with Burgers vector parallel 
to the free surface dislocation arrays consisting of two 
sets of edge dislocations chosen to satisfy the free surface 
boundary conditions axx = 0 and axy = 0 on the x = 0 
plane. 
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arrays can be obtained by representing them as a 
continuous distribution of dislocations [10] and 
their equilibrium distributions can be obtained 
by making the stress components on them vanish 
so that they do not move along the surface [7]. 
Another approach in arriving at the surface dis- 
tributions, which is more useful in complex 
geometries of the finite body [8], is the discrete 
dislocation method. In the discrete dislocation 
method, the surface array is represented by a set 
of  discrete dislocations and their equilibrium 
positions can be obtained by minimizing the 
energy of the configuration [11]. The surface dis- 
location model is conceptually self-consistent and 
does not neglect the stress field of any of the dis- 
locations in a vacuum. Thus, the elastic field of the 
dislocation is obtained after including the stress 
field of all the dislocations in the surface arrays, 
and as a natural consequence of screening of 
the stress field of the lattice dislocation by the sur- 
face array, the free surface boundary conditions 
are satisfied. The relaxation of the surface due to 
the presence of the surface array is easily under- 
stood from Fig. 3. 

The surface dislocation array, as shown in 
Fig. 3, forms steps on the surface which are 
essential to the relaxation of the surface [12]. 
These steps consist of dislocation dipoles [13]. In 
these dipoles, the edge dislocations, shown with 
full lines, are responsible for the stress field which 
screens the stress field of the lattice dislocation. 
The edge dislocations of  opposite sign, shown 
dotted, do not contribute to the stress field but 
only represent the ledge surface. Since, for every 
edge dislocation shown with a full line, there is 
one of opposite sign, the total ledge surface is 
equal to the total Burgers vector of the surface 
array. When the boundary conditions of linear 
elasticity are applied, the stresses on the surface 
should vanish leading to the conservation of the 
Burgers vector of the dislocation [7]. Thus, the 
total ledge surface is equal to the Burgers vector of 
the primary array, i.e. the Burgers vector of the 
lattice dislocation. The secondary array also 
contributes to the ledge area. Although the total 
Burgers vector of  the secondary array, i.e. the alge- 
braic sum of the Burgers vectors is zero, the ledge 
surface is not zero. When the surface is stress free, 
the sum of the Burgers vectors of the secondary 
array on one side of the half space is equal to 
brn/rr where b m is the Burgers vector of the 
lattice dislocation [7]. 
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Figure 3 The relaxation of the surface of a semi-infinite 
body containing a dislocation with Burgers vector per- 
pendicular to the surface. The formation of steps rep- 
resents the relaxed configuration. Each step consists of 
dipoles of dislocations. The edge dislocation shown with a 
full line in each step is responsible for the elastic field and 
that shown with dotted lines represents the ledge. 

The boundary conditions imposed by linear 
elasticity do not take into account the additional 
surface area produced by the ledges or steps, i.e. 
the surface energy contribution to the total energy 
is assumed to be equal to zero. However, as can 
be seen from Fig. 3, the ledge surface is an 
additional surface and if the surface energy is also 
considered in the total energy, the configuration 
tends to minimize the surface area. In the process 
of  minimization of surface energy, the surface 
energy tends to reduce the Burgers vectors of the 
surface array and also the surface array tends to 
come closer to the lattice dislocation. Since the 
surface array is now altered from the original dis- 
tribution, the surfaces can no longer be stress 
free. Thus, the effect of surface tension in reduc- 
ing the surface area of the ledges is to lower the 
sum of the Burgers vectors of the surface array and 
also to alter the stress-free surface boundary 
conditions. In the analysis that follows, the frame- 
work of linear elasticity is used to determine the 
effect of surface energy on the surface dislocation 
distribution. It should be pointed out that while 
the magnitude of non-linear effects may be of the 
same order as the effect of surface energy on the 
distribution of surface dislocation, the linear 



elasticity calculation illustrates the use of sur- 
face dislocations in dealing with surface 
phenomena. 

2. Surface dislocation model and the effect 
of surface energy 

It has become clear from the previous illustration 
that the effect of surface energy is to reduce the 
overall Burgers vector of the primary and 
secondary surface arrays. The reduction in the sum 
of the Burgers vectors also means that the sur- 
face arrays will not be present on the surface every 
where, but will be confined to a region where the 
interaction between the lattice dislocation and 
the surface array is a maximum. Fig. 4a shows the 
surface dislocation model of a lattice dislocation in 
a semi-infinite solid with its Burgers vector per- 
pendicular to the surface. The interaction between 
the lattice dislocation and the surface array 
decreases as the distance from the dislocation in 
the y-direction increases. Therefore, the surface 
array will be confined to a region - - L  < y  < L .  
In the region outside l y I > L ,  the stress field 
due to the dislocation is not sufficient to generate 
a surface ledge because t h e  increase in surface 
energy is not balanced by the reduction in energy 
due to relaxation of the surface by formation of 
the ledge. The surface energy tends to reduce the 
surface area while the stress due to the dis- 
location forces the surface to relax and thus 
form the surface array and the associated ledge 
steps. Fig. 4b shows the surface dislocation model 
with the secondary array only. While the primary 
array responds to O,cx component of stress of the 
lattice dislocation, the secondary array does so 
with respect to the crxy component. Since 
the oxy component of the stress field interacts 
to the maximum extent at l y t = d  with the 
secondary array and since the interaction is 
zero at y = 0 ,  the surface array tends to be- 
come concentrated at y = -+d. The surface 
energy tends to reduce the total Burgers 
vector of  the surface array but the stress field, 
due to the dislocation, forces the surface to relax. 
The result is the distribution of dislocations in 
the region L1 < lyl</-.2 with a maximum near 
[yl = d. The dislocation distribution in the 
secondary array is obtained by equating the 
oxy component on each dislocation to zero. 

Fig. 5a gives the surface dislocation model 
when the Burgers vector of the lattice dis- 
location is parallel to the free surface. The 
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Figure 4(a) Schematic illustration of the surface dis- 
locations in the primary surface array on the surface of a 
semi-infinite solid containing an edge dislocation with 
Burgers vector perpendicular to the free surface. Note 
that the configuration is symmetrical about the x-axis. (b) 
Schematic illustration of the surface dislocations in the 
secondary surface array on the surface of a semi-infinite 
solid containing an edge dislocation with Burgers vector 
perpendicular to the free surface. Note that the configu- 
ration is asymmetric about the x-axis. 

primary array consists of dislocations with 
Burgers vector parallel to the free surface. 
The interaction between the oxy component 
of  stress of  the lattice dislocation and the primary 
array is not a maximum at the centre. Therefore, 
when the surface is stress-free, i.e. 3' = O, the 
distribution becomes zero at y = O. The effect 
of surface energy is to push the point of  zero stress 
to either side on the y-axis. Thus the primary 
array will be spread in the region .L 1 < [Yl < L 2 .  

Outside this region, the crxy component of  
stress is not sufficient to create a surface ledge 
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Figure 5(a) Same as Fig. 4a except that the lattice 
dislocation is parallel to the free surface and the primary 
surface array also has a parallel Burgers vector. Note that 
the array lies in the region L~ < [yl <L2. (b) Same as 
Fig. 4b except that the lattice dislocation is parallel to the 
free surface and the secondary surface array has a Burgers 
vector perpendicular to the surface. 

since the surface energy of the ledge dominates. 
The dislocation distribution is an even function 
of y. and bounded at both the end points and 
throughout the region of its definition. 

Fig. 5b shows the surface dislocation model 
of the secondary array only which relaxes the 
Oxx component of stress. Since the Oxx com- 
ponent of stress has the maximum interaction 
with the surface array a t [ y  [ = d, the distribution 
reaches a maximum near ly [ = d. Also, the inter- 
action i 5 zero at y = 0 and hence the effect of sur- 
face energy is to spread the surface array in the 

region L1 < [y I <  L2. The equilibrium distribution 
of the secondary array can be obtained by making 
the C;xx component of stress vanish. The distri- 
bution of the secondary array of dislocations is an 
odd function of y and it is bounded at the end 
points and in the region of its definition. 

In order that both the stress components due to 
the lattice dislocation are relaxed to the extent 
that the configuration allows it, both the surface 
arrays, i.e. the primary and the secondary should 
be superimposed. Thus, Figs. 4 and 5 constitute 
the surface dislocation model of an edge 
dislocation in a semi-infinite solid with the effect 
of surface energy considered. It is now clear from 
the present analysis that the stresses do not vanish 
on the surface for any solid containing an internal 
source of stress, if the effect of surface energy is 
considered. 

3. Analysis of surface dislocation 
distributions 

In the following, the dislocation distributions 
associated with surface array illustrated in Figs. 4 
and 5 will be obtained using the method of 
continuously distributed dislocations [10]. The 
equilibrium in the primary array in Fig. 4a is given 
by allowing the Oxx component on each dis- 
location to become zero, thus 

1 
-L  Y - - Y i  y2 + d  2 (y2 T-d~)2j, hi 

(1) 
where bm is the Burgers vector of the lattice dis- 
location, b i is the Burgers vector of each dis- 
location in the surface array, while fl  (Yi) is the 
dislocation distribution of the surface array in the 
region - -L < y  < L  which should be determined 
from the above equation. The above integral 
equation can be inverted to obtain a bounded dis- 
tribution function by imposing the condition that 
f l ( Y )  should be an even function o f y  [14]. The 
result is 

21 (Y) = 

2bin (L 2 _y2)1/2  [2 d2 
~6~ (L 2 + d2)V2(v2 + cl ~) 

d ~ + 
(el 2 + L2)1/20,2 + el2) ~ 

Z 2 d - d ]  
-2(L  + . (2) 
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It is seen from Equation 2 that the function is 
even and also bounded at the end points and 
everywhere in the region of its definition. 
Equation 2 by itself is not completely defined 
since the value of L is not fixed. The value of L is 
fixed by imposing the condition that the energy of 
the configuration should be a minimum. Since the 
self energy of the lattice dislocation is constant, 
the energy of the configuration which should be 
minimized is given by 

ET -- 2 77 - -v )  l o g T r t l  (y)dy 

+ 2~,bi fl(y)dy 

--;)  -,o L W 

+ Gb, 2 [g z [ l o g [  (R_] --1] f l (yYl (t)dydt 
~(1 : ~)Jo .,, v',~) 

+27r~i~u) A(y)dyj0 log - - l f l ( t ) d t ,  

(3) 
where RI= = (d = +y2)l/=, Rla = t - y  andR14 = 
t + y .  R in the above equation is the size of the 
crystal which, for computational purposes, was 
chosen to be very large, i.e. R = 1 cm. The shear 
modulus, G and Poisson's ratio, u were chosen to 
be those of iron and 3 ,̀ the surface energy, is 
2000 ergs cm-2 for iron [3]. In the above equation, 
the first term represents the self energy of the 
array of surface dislocations, the second term, the 
surface energy due to the formation of the ledges, 

100 

the third term, the interaction between the lattice 
dislocation and the surface array and the fourth 
and fifth terms, the interaction energy of the array 
of surface dislocations among themselves. The func- 
tion f l  (Y) can be substituted from Equation 2 and 
E T evaluated. But since the integrals are cumber- 
some to evaluate, numerical computational proce- 
dures have been adopted [11 ] to minimize the value 
of ET with respect to bi and L. In particular, the 

integrals have been evaluated using QG10, the 
built-in scientific subroutine package of IBM, 
which uses the 10 point Gaussian quadrature for- 
mula. The value of L in A where E T reached its 
minimum value for a given value of 3' is shown in 
Fig. 6 for the position of the dislocation, d = 10 A. 
Although the value of 3' for any medium is fixed, 
it is used here as a parameter to study the effect of  
surface energy. It is seen from Fig. 6 that L de- 
creases very fast initially with increasing 3' but 
only gradually with increasing 1' at higher values of 
3'. The total Burgers vector associated with the 
surface array is obtained from 

br : 2hi A(y)dy,  (4) 

and is shown in Fig. 7 as a function of 7. It is 
seen that with decreasing 7, bw approaches bm 
indicating that the law of conservation of Burgers 
vectors is satisfied only for 7 = 0. The decrease in 
the value of b T with 3/ is very small initially but 
large for higher values of 3'. The energy of the 
configuration, excluding the self energy o f  the 
lattice dislocation, given by Equation 3, is shown 
in Fig. 8 as a function of 3'. It is seen that the 
total energy, Ea, increases with increasing 3'. The 
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Figure 6 The length to which the primary 
surface array is spread over the surface of a 
semi-infinite solid obtained by minimization 
of Equation 3 shown as a function ~, for 
d=10A.  
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Figure 7 The total Burgers vector b T 
contained in the primary surface array given 
by Equation 4 shown as a function of */for 
d =  10A. 
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distribution function f l ( Y )  given by Equation 2 
is shown in Fig. 9 for various values o f  % It 
shall be noted that although the distribution 
function is greatest at the same value of  y/L,  
this has no significance since it is the value of  L 
which determines the total Burgers vector within 
the surface array. However, it is seen that with 
increasing 7, the distribution function decreases 
more gradually. It should also be noted that when 
3' = 0, the value of  L goes to infinity and the 
distribution function becomes that with free 
surface boundary conditions. 

The dislocation distribution associated with 
the secondary array of  dislocations shown in 
Fig. 4b can be obtained by allowing the oxy com- 
ponent of stress on each dislocation to vanish. 
The equilibrium of  the surface array is given by 

,~-Llf2(Yi)dY i L2 + Jr f2(Yi)dYi 

brnd(y 2 - - d  2) 
= b~(y 2 + d2)2 (5) 
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Figure 9 The distribution function f~(y) shown in a 
dimensionless form as a function of y]L for three values 
of-r and d = 10A. 

Since the distribution function is odd and it is 
bounded at the end points, it can be inverted in 
the usual manner. The result is 

f2C v) = _+_brad [ ( y 2 - - L ~ ) ( L ~  __y2)]u2 
7rb i [(L~ +d2)(L~ + d 2 ) ]  1/2 



+ 

d2 
(d 2 + y2)(L~ + d 2) 

(d +d 2) Cv = +a2) J 
(6) 

with L2L1 = d 2 and the plus sign is used in the 
positive half plane and the negative sign in the 
negative half  plane. It is seen that the distribution 
function is bounded at the end points and every- 
where else, in the region of  its definition. It is also 
seen that when L1 = 0 and L2 -+ ~,  the distri- 
bution function reduces to that in a semi-infinite 
medium with free surface boundary conditions. 
Equation 6 by itself is not  completely defined 

since the values of  La and/-a  are not fixed. The 
values o f  L1 and L2 are determined by imposing 

the condition that the energy of  the configuration 
should be a minimum. Since the self energy of  the 
lattice dislocation is constant, the energy of  the 
configuration which should be minimized is given 
by 

Figure 10 The upper limit L~ and the 
lower limit L 1 along the y-axis in 
which the secondary surface array is 
distributed, obtained after minimizing 
Equation 7 and shown as a function of 
"~ for d = 10 A. The dotted line corres- 
ponds to Lt and the full line to L2. 

Gb 2 ~,2 
ET -- 2n(1 -- v) log (4R/bi) f2(y)dy 

1 

+ 27bi j'L~ Gbibmd (L2yf2(y)dy 
L, f2(y)dy r r ( 1 - u )  JL,-d-gT~ 

-I rr(1 --v) ~L, ~'~ log f2(y)f2(t)dtdy 

fL2 L2 

(7) 

where R 1 3  = t - - y  a n d  R 1 4  = t +y. The t e r m s  i n  

the order shown have the same significance as 
those in Equation 3. Equation 7 has been mini- 
mized numerically as described earlier [11] to 
determine LI and L2 as a function o f  7. The inte- 
grals are evaluated using the built-in subroutine 
QG10. The values of  Lt and L2 where ET given 
by Equation 7 reaches a minimum value are 
shown in Fig. 10 as a function of  7 for the 
position o f  the dislocation, d = 10 A. Although 

250 I I I I I I 

O . 4 [  I I I I I 

#.. 
0.3 

Z 
~ 0 . 2  
x~ 

0.1 

4 8 12 16 20 
(lO 2 erg cm -2 ) 

200  

~ 150 
E 
o 

T- o 
~ IOC 
u 

5O 

/ 

/ /J/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ / /  d = l O A  

I I I I I [ 
4, 8 12 16 20 24 

)," (fO 2 erg crn 2 ) 

I0 

2 4 -  

Figure 11 The total Burgers vector of the 
secondary surface array defined by Equation 
8 shown as a function of  3' for d = 10 A. 
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the value of 3' for any medium is fixed, it is used 
here as a parameter in order to study the effect 
of surface energy. It is seen from Fig. 10 that 
/12 decreases very fast initially with increasing 3' 
but only slowly at higher values of 7. The lower 
limit L1 increases almost gradually with increasing 
3' for all values of 3 .̀ It is seen that with increasing 
3 ,̀ the upper limit /,2 and the lower limit LI 
approach the value of d indicating that the length 
of the distribution of the surface array decreases. 
Since the stress field o~y of the lattice dislocation 
is a maximum at [y[ = d, both the limits approach 
d, thus decreasing the total Burgers vector 
associated with surface array with increasing 3'. 
The total Burgers vector within the surface array 
on one side of the y-axis is given by 

bi ~-2 k(y)dy ,  (8) bT 
1 

and is shown in Fig. 11 as a function of 3'. bT 
approaches bm/Tr indicating that the principle o f  
minimum energy leads to that of the free surface 
boundary conditions [7] when 3'= 0. The de- 
crease in the value of bT with increasing 3' is 
gradual. However, it is important to note that 
when 3' reaches 2 x 10 3 ergcm -2, the secondary 
surface array under the distribution function 
completely vanishes, indicating that the effect of 
surface energy on the secondary surface array is 

Figure 12 The energy o f  the  configurat ion 
o f  the  secondary array when  minimized,  
given by Equat ion  7, shown as a , funct ion o f  
3" for d = 10A,  
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very large. This result for iron also indicates that 
the axy component due to a lattice dislocation 
does not vanish on the surface since for 
3' ~ 2000 ergs cm -2, the secondary surface array 
almost completely vanishes. It is seen from 

Fig, 12 that the total energy E T increases with 
3' and becomes positive if 3' exceeds 2 x 
103 ergscm -2, which indicates that the surface 
energy of the ledge is more than the energy of 
relaxation produced due to its formation. The 
distribution function f2(Y) given by Equation 
6 is shown in Fig. 13 for various values of 3'. The 
co-ordinate takes zero value at L1 and reaches 
unity at La. It is seen that the distribution 
function reaches a maximum at some value of 
y between L1 and L2 and this position of the 
maximum shifts as 3' increases. The above analysis 
completes the surface dislocation model for an 
edge dislocation with Burgers vector perpendicu- 
lar to the surface. 

T h e  analysis of the surface dislocation model 
for an edge dislocation with Burgers vector parallel 
to the surface is given by analysing the primary 
and secondary surface arrays in Fig. 5a and b. The 
dislocation distribution function representing the 
primary surface array in Fig. 5a is obtained by 
making the axy component of stress vanish on 
each dislocation in the array. The corresponding 
equilibrium condition is given by 

"7" ( [02 erg crrT2 ) 
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Since the distr ibution function fa(Yi) is even and 
bounded at the end points and everywhere in the 
region o f  its definit ion,  it can be evaluated to be 

braY [(y2 _ L~)(L~ _ y2 ] 1/~ 
f3(Y) = nbi[(L ~ + d2)(L~ + d2)] 1/= 

[ (d 2 + y2)(L~ + d 2) + 

d 2 (yZ _ d 2 ) ]  

(d 2 + Y2)(L2 + d 2) ( 7  + ~ _ l  (10) 

with L2L1 = d 2. The terms h m and hi have the 
same meaning as earlier. The distribution function 
given by Equation 10 is bounded at the end 
points and becomes that  for a semi-infinite med- 
ium with a free surface when L2 +oo and L1 +0.  

Figure 13 The distribution function f2(Y) 
shown in a dimensionless form as a function 
of (y--LI)/(L 2 -L~)  for two values of 3" 
and for d = 10A. Note that the maximum 
in the distribution function shifts with 
increasing 3". 

The quantities L 1 and L2 in Equation 10 are fixed 
by superimposing the condit ion that the energy 
of  the configuration should be minimum. Since 
the self energy of  the latt ice dislocation is constant,  
the energy of  the configuration which should be 
minimized is given by 

E'r  - 27r(1 --  ~ ' ~  l~ ~ i  f ]  f3 (y)dy  

f~ Gbibrn 
+ 27bi 2f3(y)dy 7r(1 - -u )  

+ 

+ rr(1 Zp)VL~ y log f3 (y )A( t )dyd t  

27r(1 u) f ;  f l3(y)dy" log f3(t)dt ,  
- -  1 " Z  t 

(11) 

where R12 = (d 2 -t-y2) 1/2, R13 = t - - y  and 

R14 = t + y .  All the terms in the above equation 

Figure 14 Values of L 1 and L 2 obtained 
by minimizing ET, given by Equation 11 
shows as a function of 3" for d =  10A. 
The full line corresponds to L 2 and the 
dotted line to Lt. 
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Figure  16  ET,  the  total  energy of  the  con- -o.7 
f iguration when  minimized,  given by  
Equat ion  11 shown as a func t ion  o f  3, for 
d = 10A.  -o . s  
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Figure  15 The total  Burgers vector,  bT, con- 
tained in the  pr imary surface array defined 
by Equat ion  12 and shown as a func t ion  of  
"r f o r d  = 10A.  
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Figure  1 7  The distr ibution func t ion  
~ ( y )  in the  dimensionless form given by  
Equat ion  10 and shown as a func t ion  of  
(y  - -  L 1 ) / (L  2 - -  LI ) for two values o f  "y 
f o r d  = 10A.  



have the same significance in the order shown as 
those in Equation 3. E T has been minimized as a 
function of 3' to arrive at value of L~ and Lz and 
the computational procedures used are the same as 
those given earlier. The values of L1 and L2 
obtained from the minimization procedure are 
shown in Fig. 14 as a function of 3'. Although the 
value of 3' is fixed for any medium, the effect of 
surface energy becomes evident from Fig. 14. It 
is seen that L2 decreases very fast initially but 
only gradually at higher values of 3'. The quantity 
L1 increases gradually at all 3'. It is seen that the 
lower limit is increased nearly 5 A above the 
y = 0 axis if 7 is increased to a very large value. 
At 3  ̀= 2000, which is the value for iron, it is 
seen that La is equal to zero. It is also seen from 

Fig. 14 that the effect of surface energy on the 
primary surface array is much smaller compared 
to the effect on the primary surface array for an 
edge dislocation whose Burgers vector is perpen- 
dicular to the surface. This may be due to the fact 
that the surface array, when the Burgers vector is 
parallel to the surface, is spread to very large 
distances from the dislocation. The total Burgers 
vector, b T contained in surface array is defined as 

f? b T = 2bi fa(y)dy (12) 
! 

and is shown as a function of 3̀  in Fig. 15. It is 
seen that b T decreases very rapidly initially but 
only gradually at higher values of % as 7 increases. 
The total energy of the configuration ET given by 
Equation 11 is shown in Fig. 16 as a function of 3'. 
It is seen that in order to eliminate the surface 
array completely, a very high value of the surface 
energy is required. The distribution function 

f3(Y) given by Equation 10 is shown for two 
values of 3  ̀in Fig. 17. The co-ordinate axis becomes 
zero at y = L~ and unity a ty  = L2. It is seen that 
the maximum in the distribution function shifts 
away from the y = 0 line as 3, increases. It is also 
to be noted that even when y = 0, the maximum 
in the distribution is not at the origin for the 
rea.~on mentioned earlier. 

The dislocation distribution associated with the 
secondary array of dislocations shown in Fig. 5b 
can be obtained by making the o:~x component of 
stress on each dislocation vanish. The equilibrium 
of the surface array is given by Equation 5 and the 
distribution function is given by Equation 6. 
However, the values of L~ and L2 are obtained by 
imposing the condition that the energy of the 
configuration should be a minimum. Since the self 
energy of the lattice dislocation is constant, the 
energy of the configuration which should be 
minimized is given by 

Gb] f-~i-) L~ 

+ 2bi7 ;L, f2 (y)dy 

Gbibmd (L2yf2(y)dy 
rr(1 --v) JL~ d 2 + y 2  

L2 R 

f 2 ( y ) d y  �9 
2rr(i - -  v) L ,  

~;:2[log(R@4)--llf2(t)dt (13) 

Figure 18 L l and L 2 obtained as a result 
of minimization of E T given by 
Equation 13 shown as a function of 3' 
for d = 10 A. The full line indicates the 
values of L 2 and the dotted line that of 
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Figure 19 bT, the total Burgers vector con- 
tained in the secondary surface array near a 
lattice dislocation with Burgers vector parallel 
to the surface shown as a function of ~, for 
d =  10A. The definition of b T is given by 
Equation 8. 

where  R13 = t - - y  and R14 = t + y .  The terms 
in the order shown have the same significance as 
those in Equation 7. Equation 13 has been 

minimized in order to determine the values of  L1 
and L2 as a function of  3". Comparison of  Fig. 18, 
where L1 and L~ are shown as a function of  3", 
with Fig. 10 shows that  the variation of  L t  and L2 
is almost the same. Similarly, bT,  the total  Burgers 
vector under the surface array defined by  Equa- 
tion 8 and shown in Fig. 19 has the same relation- 
ship to 3" as shown earlier in Fig. 11. Thus, the 
secondary surface array, although of  different 
orientat ion when the lattice dislocation is per- 
pendicular or parallel to the interface,  bears the 
same relationship to 3". The total energy ET 
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Figure 20 ET, the total energy of the 
configuration when minimized, given by 
Equation 13 shown as a function of ? for 
d = 10A. 
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obtained at different values of  3" is shown in 
Fig. 20 and it has the same dependence on 3" as 
was seen in Fig. 12. Thus, the secondary surface 
arrays need not  be considered separately for the 
two orientations of  dislocations, even when the 
effect of  surface energy is taken into account.  It 
should also be noted that  the secondary surface 
array vanishes completely when the surface 
energy reaches a value of  2000 erg cm -2 . 

4. Discrete dislocation analysis 
The previous results have been obtained using the 
method of continuously distributed dislocations. 
As mentioned earlier, the analysis of  the surface' 
dislocation array can also be made us ing- the  

0 .4  - -  

24  
{ 

[ I I __1 I 1 
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discrete dislocation method. The discrete dis- 
location method uses the same principles employed 
earlier except that the surface array is now rep- 
resented by discrete dislocations. In the discrete 
dislocation method, the total energy of the con- 
figuration is minimized with respect to the 
positions of the dislocation array. In particular, 
when the primary surface array in Fig. 4a is 
determined, the total energy of the configuration 
is given by 

E'r = 2Ns 4rr(1 -- v) log + 2NsTb i 

+ ~  ~ t r U l y ) [ l o g  - -1  
j = i + l  i=1 

j = l  i= I  

Ns Gbib m 
- Z - v )  

i=1 

• log(a: +y]) l , :  ( d : + y ] )  ' 04)  

where R12 = y j - - Y i ,  R13 = y j  + Yi  and Yi and Yi 
are the positions of the ith and ]th surface dis- 
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locations in the array. In the above equation, 
the self energy of the lattice dislocation is not 
considered since it is a constant term. The first 
term in the above equation is the self energy of 
all the surface dislocations numbering 2Ns, the 
second term their contribution to the surface 
energy, the third term, the interaction energy of 
the surface arrays on either side of the y-axis, 
the fourth term, the interaction energy of the 
surface array on the positive y-axis with those on 
the negative y-axis and the fifth term, the inter- 
action energy between the lattice dislocation of 
Burgers vector, b m with all the dislocations in 
the surface array. Equation 14 is minimized with 
respect to the positions of all tile Ns variables, 
i.e. the positions of dislocations in the surface 
array. It is also minimized with respect to the 
number of dislocations, i.e. surface dislocations 
are added to the surface as long as the energy of 
the configuration decreases. In the above equation, 
the effect of  surface energy is taken into account 
through the ledge surface energy. Equation 14 is 
essentially similar to the earlier equations of 
energy written in the continuous distribution 
method; although here the dislocations are discrete, 
whereas they are distributed continuously in the 
earlier method. The energy of the configuration is 
shown in Fig. 21 as a function of 7. The shear 

60 70 

Figure 21 E T given by Equation 14 ob- 
tained from the discrete dislocation 
method by minimization with respect 
to the positions of all the dislocations. 
The arrows indicate the number of surface 
dislocations present at the value of 3' 
specified on the x-axis, but only on one 
half of the surface. 
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Figure 22 The dislocation configuration of the primary dislocation array on the surface of a semi-inf'mite solid con- 
raining a dislocation with Burgers vector perpendicular to the surface. The lattice dislocation is separated by 10 A from 
the surface. 

modulus and Poisson's ratio have been assumed to 
possess the same values mentioned earlier. The 
lattice dislocation has a Burgers vector, b m =  2.4 A. 
The surface dislocations are assumed to possess a 

Burgers vector of  magnitude b i = 0.1 A. The 
arrow at each point  and the number associated 
with each arrow indicates the energy of  the con- 

figuration and the number of  surface dislocations 
N s in the surface array. It is seen from-Fig. 21 that  
in order to eliminate the surface array completely,  
a very high value of  surface energy is required. The 
dislocation is separated from the surface by  
d = 10A.  It is seen that  with increasing surface 

energy, the surface array comes closer to the 
lattice dislocation because there are a smaller 
number of  lattice dislocations in the array. 

The discrete dislocation method can also be 
carried out using the same principles as that  for 
the secondary surface array. The energy of  the 
configuration will again be given by  an equation 
similar to Equation 14 with the difference that  the 
interaction enegy of  the dislocations in the 
secondary array and the interaction of  the lattice 
dislocations with the secondary array should be re- 
placed by new terms. The energy associated with 
the configuration of  the secondary array of  dis- 

7" (erg cr52) 
100 200 300 400 500 600 700 800 900 1000 

I I I I I ~ i I i I 

4 ~ 3 
~ -0.4 
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Figure 23 ET, the total energy of the configuration obtained by the minimization procedure using the discrete dis- 
location method. The arrows and the associated numbers indicate the number of surface dislocations present on one 
side of the y-axis in the secondary array. 
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locations is shown in Fig. 23 as a function of the 

surface energy T- The energy of the configuration 

E T and the associated number of surface dis- 

locations in the array, Ns, are indicated at each 
arrow on the curve. It is seen that a surface energy 

of 1000ergcm -2 eliminates almost all of the 

surface dislocations except two. The dislocation 

configuration is shown in Fig. 24 for three values 

of 7. It is seen that with increasing 7, the surface 

dislocations become eliminated and move towards 

the point of maximum interaction, y = d  on 

the surface. The spreading of the surface array 
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P 
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Figure 24 Dislocation configuration of the 
secondary array on the surface of a semi- 
infinite solid containing a dislocation with 
Burgers vector perpendicular to the sur- 
face. d = 10 A from the surface. 

of  dislocations is also greatly reduced as illus- 

trated by the dislocation configuration for 
7 = 1000 ergcm -2 . It is also seen that the energy 

contribution for relaxation of the surface is only 
of the order of 10 -s ergcm -2 from the secondary 
array, while it is of the order of 10 .3 ergcm -2 

from the primary array. It is for this reason that 
the second surface array is considered to be of 

secondary importance. 
The discrete dislocation analysis can be carried 

out for the primary array for a lattice dislocation 
with Burgers vector parallel to the free surface 
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Figure 25 ET, the total energy of the -06 
configuration obtained by the minimization 
procedure using the discrete dislocation 
method. The arrows and the associated -o7 
numbers indicate the number of surface 
dislocations present on one side of the 
y-axis in the primary array. -o.8 
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Figure 26 Dislocation configuration of the primary array on the surface of a semi-infinite solid containing a dislocation 
with Burgers vector parallel to the surface, d = 10 A from the surface. For 7 = 0, one of the dislocations in the surface 
array situated away could not be shown. 

when the interaction energy terms in Equation 14 
are replaced by the appropriate terms. The results 
of  the minimization o f  the E r to determine the 
positions of  the dislocations are shown in Fig. 25 
as a function o f  7 for two values of  d. The energy 
of  the configuration and the associated number of  
dislocations in the surface array are shown by 
arrows on each curve. It is seen that the primary 
surface array can be eliminated completely only 
with very high surface energy. The dislocation con- 
figurations obtained after minimization of  the 
energy of  the configuration are shown in Fig. 26 
for various values of  3'. It is seen that the spreading 
of  the surface array is much greater in comparison 
to the primary array near a lattice dislocation with 
Burgers vector perpendicular to the surface. It is 
also to be noted that the surface array does not 
move towards the y = 0 point because the inter- 
action energy is not a maximum there. It is seen 
that the maximum number of  dislocations is found 
near y = d. The secondary surface array for the 
lattice dislocation with Burgers vector parallel to 
the free surface behaves in the same way as that 
near a lattice dislocation with Burgers vector per- 
pendicular to the free surface. Therefore, the 
analysis and results are not presented here sepa- 
rately. The results shown in Figs. 23 and 24 apply 
to the secondary array with Burgers vector parallel 
to the free surface. It should also be mentioned 
that the method of  discrete dislocations gives 

results to any accuracy required provided the 
Burgers vector of  the surface array is chosen 
sufficiently small, and correspondingly the number 
of  dislocations in the surface array will be large. 
While the method of  continuously distributed dis- 
locations gives results which are very exact, the 
discrete dislocation method has the advantage that 
it can be adopted with ease to complex geometries 
and finite bodies where the effect of  surface 
energy is equally important. It is seen from the 
results obtained by the discrete dislocations 
method, that they are in good agreement with the 
results obtained by the continuous distribution 
method. 

5. Further applications of the present 
results 

It has been relatively simple to take into account 
the effect of  surface energy because the surface 
array directly gives the ledge area and the 
additional surface energy associated with it. Thus, 
the surface dislocation method has the added ad- 
vantage that it can analyse all the surface 
phenomena associated with the relaxation of  the 
surfaces under either an external stress source or 
an internal stress source as illustrated here. Other 
methods, namely the Green's function technique 
and the image dislocation method lack this 
advantage, unless modified. The analysis o f  the 
effect of  surface energy on the surface boundary 
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conditions using the surface dislocation model is 
a good illustration of the superiority of the sur- 
face dislocation model over the other methods. 

The present results also indicate that the free 
surface boundary conditions used in classical linear 
elasticity are not strictly valid since the effect of 
surface energy will be to eliminate the surface 
arrays and thus introduce stresses on the surface of 
the solid. Since the surface arrays present make 
certain of the stresses vanish on a part of the 
surface, the remaining part of the surface will be 
made susceptible to environmental interaction and 
thus introduces non-uniformily stressed regions. 
The effect of the surface energy on the surface 
boundary conditions is thus very important and 
should be considered in many phenomena. 

Many physical phenomena depend on the total 
amount of surface area exposed as well as on the 
surface morphology. The nucleation of any micro- 
scopic process starts on the surface of a solid 
where extra ledge surface is present due to internal 
sources of stress, namely dislocations. A particular 
example is catalysis. It is well known that chemical 
reactions depend strongly on the form of the 
surface. An array or group of dislocations near the 
surface gives rise to a large ledge area modified by 
the surface energy in the form illustrated for a 
single dislocation. The effect of the surface 
conditions due to internal sources of  stress could 
modify the particular reaction phenomena to 
varying degrees. In particular, the present study 
shows that the surface morphology due to internal 
sources of stress arising from dislocations is a very 
important consideration. The surface dislocation 
approach in analysing such phenomena is shown to 
be a very powerful method. 

6. Summary and conclusions 
The method of continuously distributed dis- 
locations and the method of discrete dislocations 
are used to study in detail the effect of surface 
energy on the surface boundary conditions of a 
solid containing an edge dislocation. Two orien- 
tations of dislocations, with Burgers vector per- 
pendicular to the surface and parallel to the 

surface are considered and the primary and 
secondary arrays of dislocations are determined 
in each case taking into account the effect of 
surface energy. The dislocation distribution 
functions representing the surface arrays are 
determined exactly. The minimization of the 

energy of the configuration has been used to deter- 
mine the spread of the surface array on the 
surface. The effect of surface energy is to 
eliminate the surface arrays, while the effect of the 
stress field of the dislocation is to retain the sur- 
face arrays. It has been found that very high values 
of  surface energy are required to eliminate the 
primary arrays completely, but the secondary 
surface arrays are eliminated almost completely 
with very small values of surface energy. In 
general, for normal values of surface energy, the 
secondary surface array is almost completely 
eliminated. The results of the discrete dislocation 
method are in close agreement with those of the 
continuous distribution method. While the 
discrete dislocation method is not as exact as the 
mathematically exact continuous distribution 
method, it has the advantage that it can be 
employed in situations of complex geometries 
where the mathematical analysis may become pro- 
hibitively complex. Thus, the discrete dislocation 
method can be adapted to any situation. 

It has been shown that the surface dislocation 
method enabled an analysis to be made of the 
effect of  surface energy on the surface boundary 
conditions of the internally stressed solid. Thus, 
the surface dislocation method is superior to the 
other classical methods of linear elasticity and 
dislocation theory and thus, may be employed 
in order to study the surface relaxation 
phenomena. 
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